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Abstract

Over the course of instruction, instructors generally collect a great deal of information

about each student. Integrating that information intelligently requires models for how a

student’s proficiency changes over time. Armed with such models, instructors can filter the

data—more accurately estimate the student’s current proficiency levels—and forecast the

student’s future proficiency levels. The process of instructional planning can be described

as a partially observed Markov decision process (POMDP). Recently developed computer

algorithms can be used to help instructors create strategies for student achievement and

identify at-risk students. Implementing this vision requires models for how instructional

actions change student proficiencies. The general action model (also called the bowtie

model) separately models the factors contributing to the success or effectiveness of an

action, proficiency growth when the action is successful, and proficiency growth when the

action is unsuccessful. This class of models requires parameterization, and this paper

presents two: a simple linear process model (suitable for continuous proficiencies) and

a birth-and-death process model (for proficiency scales expressed as ordered categorical

variables). Both models show how to take prerequisites and zones of proximal development

into account. The filtering process is illustrated using a simple artificial example.

Key words: Markov decision processes, growth models, prerequisites, zone of proximal

development, stochastic processes, particle filter
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Table of Notation

This paper uses the following notational conventions:

• Random variables are denoted by either capital letters (e.g., X), or by words in small

capitals (e.g., Mechanics).

• Variables whose values are assumed to be known are denoted with lower case letters

in italics (e.g., t).

• Scaler-valued quantities and random variables are shown in italic type (e.g., X, t),

while vector-valued quantities and random variables are put in boldface (e.g., at, St).

• When a random variable takes on values from a set of tokens instead of a numeric

value, then the names of the variable states are underlined (e.g., High, Medium, Low).

• The function δ(·) has a value of 1 if the expression inside the parenthesis is true and 0

if it is false.

• P(·) is used to indicate a probability of a random event, and E[·] is used to indicate

the expectation of a random variable.

Note that Figures 5, 7, and 9 are movies in MPEG-4 format. These should

be viewable in recent versions of Adobe Reader, although an additional viewer

component may need to be downloaded. If you are having difficulty getting this to

work, or if you have a paper copy of this report, the animations may be viewed at

http://www.ets.org/Media/Research/pdf/RR-07-40-MusicTutor.pdf
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1 Introduction

Black and Wiliam (1998a, 1998b) gathered a number of studies that support the result

that teachers using assessment to guide instructional decision-making had measurably

better outcomes than teachers who did not. A mathematical model of this decision-making

process requires two pieces: a model for the assessment and a model for the instructional

activity. Evidence-centered assessment design (ECD; Mislevy, Steinberg, & Almond, 2003)

provides a principled approach to developing a mathematical model for the instructional

component but not effects of instruction.

Teachers, tutors, and other instructors build qualitative models for the effects of the

instruction that become a critical part of their reasoning. ETS’s Pathwise R© curriculum is

typical in this respect. Each unit describes the topic covered—the effect of instruction—and

the prerequisites—the factors leading to success. What is typically missing is any

quantitative information, information about how likely students are to succeed at the lesson

(if the prerequisites are or are not met) and how large the effect is likely to be if the lesson

is successful (or unsuccessful).

This report describes a general action model (Section 4; called the bowtie model because

of the shape of the graph) that is compatible with the qualitative model used informally

by instructors. In particular, it provides explicit mechanisms for modeling prerequisite

relationships and the effects of actions, as well as providing a general framework for eliciting

model parameters from subject-matter experts. The general action model has been used

in modeling welfare-to-work counseling (Dekhtyar, Goldsmith, Goldstein, Mathias, &

Isenhour, in press; Mathias, Isenhour, Dekhtyar, Goldsmith, & Goldstein, 2006).

One important reason to model the effects of instruction is that it provides a framework

for integrating information gathered about a student at multiple points of time (before

and after instruction). Consider a typical tutoring regimen. The student and the tutor

have regular contacts at which time the student performs certain activities (benchmark

assessments) that are designed, at least in part, to assess the student’s current level of

proficiency. Typically such assessments are limited in time, and hence reliability, but over

time the tutor amasses quite a large body of information about the student. However, as
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the student’s proficiency is presumably changing across time, integrating that information

requires a model for student growth.

In many ways the problem of estimating the level of student proficiency is like

separating an audio or radio signal from the surrounding noise. Algorithms that use

past data to estimate the current level of a process are known in the signal-processing

community as filters. Section 5 explores the application of filtering techniques in the context

of educational measurement.

A related problem to filtering is forecasting. Forecasting uses the model of how a

proficiency develops to extrapolate a student’s proficiency at some future time. Forecasting

models have particular value in light of the current emphasis on standards in education.

Instructors want to be able to identify students who are at risk for not meeting the

standards at the end of the year, in time to provide intervention.

Ultimately, the purpose of the instructor is to form a plan for meeting a student’s

educational goals. A plan is a series of actions—in this case a series of assignments—to

maximize the probability of achieving the goal. Instructors need to adapt those plans to

changing circumstances and on the basis of new information. In particular, they need to

develop a policy — rules for choosing actions at each time point based on current estimates

of proficiencies.

Understanding what interventions are available is key to building useful assessments.

An assessment is useful to a instructor only if that assessment helps the instructor choose

between possible actions. Section 3.1 discusses embedding the assessment in the context of

the instructor’s decision problem. Section 3.2 describes how repeating that small decision

process at many time points produces a Markov decision process , and Section 3.3 provides

a brief review of similar models found in the literature. Casting the instructor’s problem

in this framework allows us to take advantage of recent research in the field of planning

(Section 6).

In order to take advantage of this framework, a model of how proficiencies change

over time is needed. Section 4 describes a broad class of models for an action that a

instructor can take. The general form supports both models where the proficiency variables
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are continuous (Section 4.2) and those where they are discrete (Section 4.3). All of these

models will be described using a simple music tutoring example introduced in Section 2.

Section 5 illustrates this simple example numerically with some simulation experiments.

2 The Music Tutor

Consider a music tutor who meets weekly with a student to teach that student how to

play a musical instrument.1 Each week the tutor evaluates the student’s progress and makes

an assignment for what the student will do during the next week. To simplify the model,

assume that most of the learning occurs during the student’s practice during the week. The

tutor may demonstrate new concepts and techniques to the student, but it is through using

them over the course of the week that the student learns them.

For simplicity, let the domain of proficiency consist of two variables:

• Mechanics—Being able to find the right fingerings for notes; knowing how to vary

dynamics (volume) and articulation; being able to produce scales, chords, trills, and

other musical idioms.

• Fluency—Being able to play musical phrases without unintended hesitation; being

able to sight-read music quickly; playing expressively.

Obviously, there is some overlap between the two concepts, and in a real application better

definitions would be needed. Also, although these concepts could increase to arbitrarily

high levels (say those obtained by a professional musician), the tutor is only interested in a

relatively limited range of proficiency at the bottom of the scale.

Although the proficiencies are correlated, there is another facet of the relationship that

must be taken into account: Mechanics are a prerequisite for Fluency. For example, if

the student has not yet mastered the fingering for a particular note, then the student is

unlikely to be able to play passages containing that note without hesitation.

At each meeting between student and tutor, the tutor assigns a practice activity that

contains some mixture of exercises and songs (musical pieces or a meaningful part of a

musical piece) for the student to practice. Vygotsky’s zone of proximal development theory
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(Vygotsky, 1978) is clearly relevant to this choice. If the tutor assigns a lesson that is too

easy, then the student will not reap much benefit. Similarly, if the tutor assigns a lesson

that is too difficult, then very little learning will occur. Part of the problem is assessing

the current level of proficiency, so that appropriate lessons can be assigned. Assume that

the tutor can adjust the difficulty of the activity in the two dimensions, Mechanics and

Fluency. This paper will refer to at = (at,Mechanics, at,Fluency) as the action taken by the

tutor (or the assignment given by the tutor) at Time t.

Lessons occurs at discrete time points, t1, t2, t3, . . .. In general, these will be regular

intervals, but there may be gaps (vacation, missed lessons, etc.). Because what happens

between one lesson and the next is of interest frequently, let ∆tn = tn+1 − tn, the amount

of time until the next lesson. (In many applications, ∆tn will be constant across time;

however, the notation allows for missed lessons, vacations, and other causes for irregular

spacing.) Even in a relatively constrained example, a large number of features of the

problem must be modeled. The following section describes those models in more detail.

3 A General Framework for Temporal Models

As seen in the proceeding example, the tutor needs to make not just one decision,

but rather a series of decisions, one at each time point. One class of models addressing

such a sequence of decisions is the Markov decision process (MDP; Section 3.2). However,

before looking at a problem spanning many time points, it is instructive to look at a model

with just two time points. Section 3.1 takes a look at this model and the lessons that can

be learned from it. The full MDP framework is created by repeating this simple model

over multiple time points (Section 3.2). Section 3.3 compares the framework proposed

here to others previously studied in the literature. This framework is quite general;

specific parameterizations are needed to build models. Section 4 describes one approach to

parameterizing these models.
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Figure 1 Influence diagram for skill training decision.

Note. An influence diagram that shows factors revolving around a decision about whether

or not to send a candidate for training in a particular skill.

3.1 The Value of Assessment

In a typical educational setting, the payoff for both the student and the instructor

comes not from the assessment or the instruction but rather from the student’s proficiency

at the end of the course. Figure 1 shows an influence diagram (Howard & Matheson, 1981)

illustrating this concept. Influence diagrams have three types of variables represented by

three different node shapes:

• Square boxes are decision variables . Arrows going into decision variables represent

information available at the time when the decision is to be made.

• Circles are chance nodes (random variables). Arrows going into the circles indicate

that the distribution for a given variable is specified as conditional on its parents in the

graph. Note that this sets up the same kind of conditional independence relationships

present in Bayesian networks. (Hence an influence diagram consisting purely of chance

nodes is a Bayesian network.)

• Hexagonal boxes are utilities . Utilities are a way of comparing possible outcomes from

the system by assigning them a value on a common scale (often with monetary units).

Costs are negative utilities.

On the right of Figure 1 is a node representing the utility associated with a student

knowing the skill at the end of the course. The student’s probability of knowing the skill

at the end of the course depends on both the student’s skill level at the beginning of the
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course and what kind of instruction the student receives. The instruction has certain costs

(both monetary and student’s time) associated with it (as does no instruction, but utilities

can be scaled so that the cost of no instruction is zero). The student’s ability is not known

at the beginning of the course, but the student can take a pretest to assess the student’s

ability. This pretest also has a cost associated with it. The outcome of the pretest can aid

the decision about what instruction to give.

The decision of what instruction to provide depends not only on whether or not the

student seems to have the skill based on the results of the pretest but also the cost of the

instruction and the value of the skill. If the instruction is very expensive and the skill not

very valuable, it may not be cost-effective to give the instruction, even if the student does

not have the skill. Similarly, the decision about whether or not to test will depend both on

the cost of the test and the cost of the instruction. If the instruction is very inexpensive

(for example, asking the student to read a short paper or pamphlet), it may be more

cost-effective to just give the instruction and not bother with the pretest.

A concept frequently associated with decision analysis problems of this type is the value

of information (Matheson, 1990). Suppose a perfect assessment could measure the student’s

initial proficiency without error. Armed with perfect knowledge about the student’s initial

proficiency, one could make a decision about which instructional action to take and calculate

an expected utility. Compare that to the expected utility of the best decision that can be

made when nothing is known about the student’s initial proficiency level. The difference

between these two conditions is the expected value of perfect information. In general, real

assessments have less than perfect reliability. If the error distribution for an assessment is

known, it is possible to calculate its expected value of information for this decision (which

will always be less than the value of perfect information). Note that an assessment is only

worthwhile when its value of information exceeds its cost.

In many ways, an assessment that has high value of information is similar to the hinge

questions of Black and Wiliam (1998a). A hinge question is one used by an instructor to

make decisions about how to direct a lesson; in other words, the lesson plan is contingent

on the responses to the question. In a similar way an assessment that has high value of
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information becomes a hinge in the educational strategy for the student; future actions

are based on the outcome of the assessment. Note that there are other ways in which

a well-designed assessment can be valuable for learning, such as promoting classroom

discussion and helping students learn to self-assess their own level of proficiency.

3.2 Markov Decision Processes

The model of Section 3.1 contains only two time points. The challenge is to extend

this model to cover multiple time points, t1, t2, t3, . . .. For simplicity, assume that the cost

of testing is small, so that whether to test at each time slice is not an issue. Periodic

assessments are sometimes called tracking or benchmark assessments. At each time point,

the student is given an assessment and the instructor needs to decide upon an action to

carry out until the next time point. Assume that given perfect knowledge of the student’s

current state of proficiency, the expectations about the student’s future proficiency are

independent of the student’s past proficiency. This Markov assumption allows the periodic

assessment and instructional decision process to be modeled as a Markov decision process

(MDP).2 The Markov assumption might not hold if there was some latency to the process

of acquiring proficiency, or if there was some kind of momentum effect (e.g., having just

learned a concept making the student more receptive to learning the next concept). Often a

process can be turned into a Markov process by adding another variable to the current state

to capture the dependency on the past. In the above example, a none could be included for

the student self-efficacy or other noncognitive factors that might lead to dependencies to

the past.

Figure 2 shows several time slices of an MDP for student learning. Each time slice,

t = 1, 2, 3, . . ., represents a short period of time in which the proficiencies of the learner

are assumed to be constant. The variables St (vector valued to reflect multiple skills)

represent the proficiency of the student at each time slice. The variables Ot (vector valued

to represent multiple tasks or multiple aspects on which a task result may be judged)

represent the observed outcomes from assessment tasks assigned during that time slice. The

activities are chosen by the instructor and occur between time slices. To model a formative
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Figure 2 Testing as Markov decision process.

Note. This model shows an MDP made up of two submodels (to be specified later), one

for assessment and one for growth. The nodes marked with circles (©) represent latent

variables, the nodes marked with triangles (5 ) are observable quantities, and the nodes

marked with diamonds (�) are decision variables whose quantities are determined by the

instructor.

assessment, the time slices could represent periodic events at which benchmark assessments

are given (e.g., quarters of the academic year). To model an electronic learning system, the

time slices could represent periods in which the system is in assessment mode, while the

activities represent instructional tasks. As a simplifying approximation, assume that no

growth—change in the state of the proficiency variables—occurs within a time slice.

In general, the proficiency variables S are not observable, therefore Figure 2 represents

a partially observable Markov decision process (POMDP; Boutilier, Dean, & Hanks, 1999).

As solving POMDPs is generally hard, opportunities must be sought to take advantage of

any special structure in the chosen models for assessment and growth. In particular, the

relationship among the proficiencies can be modeled with a Bayesian network.

Dynamic Bayesian networks (DBNs; Dean & Kanazawa, 1989) are Bayesian networks

in which some of the edges represent changes over time. (In Figure 3, the curved edges are

temporal while the straight edges connect nodes within a single time slice.) The DBN is

basically a Bayesian network repeated at each time slice with additional edges connecting

(proficiency) variables at one time point to variables at the next time point. Boutilier et

8



Skill1

Skill2

Skill3

t=1

Skill1

Skill2

Skill3
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Skill1

Skill2

Skill3

t=3

Obs 1-1

Obs 2-1

Obs 3-1

Obs 1-2

Obs 2-2

Obs 3-2

Obs 4-3

Obs 2-3

Obs 3-3

Figure 3 Dynamic Bayesian network for education.

Note. In this figure, the state of the proficiency variables at each time slice is represented with

a Bayesian network. The dotted edges represent potential observations (through assessment

tasks) at each time slice. The curved edges represent temporal relationships modeling growth

among the skills. Note that the assigned tasks and observables may change from time point

to time point.

al. (1999) noted that a DBN can be constructed by first constructing a baseline Bayesian

network to model the initial time point and then constructing a two time-slice Bayesian

network (2TBN) to model the change over time.

Although DBNs have been known for over a decade, until recently their computational

complexity has made them impractical to employ in an authentic context. Boyen and Koller

(1998) presented an approximation technique for drawing inferences from DBNs. Both

Koller and Learner (2001) and Murphy and Russell (2001) presented approximations based

on particle filtering (Appendix A; Liu, 2001; Doucet, Freitas, & Gordon, 2001). Takikawa,

D’Ambrosia, and Wright (2002) suggested further efficiencies in the algorithm by noting

variables that do not change over time, producing partially dynamic Bayesian networks.

There is a close correspondence between the POMDP model of Figure 2 and

evidence-centered design objects (Mislevy et al., 2003). The nodes St represent the

proficiency model and the nodes Ot (or more properly the edges between St and Ot)

represent the evidence models. What this framework has added are the action models : the
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2TBNs representing the change between St1 and St2 . One of the principal challenges of this

research is to build simple mathematical models of proficiency growth (the 2TBNs) that

correspond to the cognitive understanding of the process. The term action model recognizes

that actions taken by the instructor will influence the future proficiency level of the student.

3.3 Similarity to Other Temporal Models

Removing the activity nodes from Figure 2 produces a figure that looks like a hidden

Markov model, a class of models that has found applications in many fields. Langeheine

and Pol (1990) described a general framework for using Markov models in psychological

measurement. Eid (2002) used hidden Markov models to model change in consumer

preference; and Rijmen, Vansteelandt, and De Boeck (in press) used these models to model

change in patient state at a psychiatric clinic. Both of these applications have a significant

difference from the educational application in that the set of states is unordered (consumer

preference), or at best partially ordered, while there is a natural order to the educational

states. Generally, in education the student moves from lower states to higher states, where

in the other applications the patient can move readily between states. Reye (2004) looked

at Markov models in the context of education and also arrived at a model based on dynamic

Bayesian networks.

Similar models for change in student ability have been constructed using latent growth

curves, structural equation models and hierarchical linear models (Raudenbush, 2001). Von

Davier and von Davier (2005) provided a review of some of the current research trends and

software used for estimating these models. One complication addressed in many of these

models, but not in this paper, is the hierarchy of student, classroom, teacher, and school

effects, all of which can affect the rate at which students learn.

If the tests administered at each time point are not strictly parallel, then the issue of

equating the test forms, sometimes called vertical scaling, arises. As this goes far beyond

the scope of this paper, which does not address estimation in depth, all of the benchmark

tests are assumed to be either strictly parallel or have been placed on a common vertical

scale.
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Most of the research surveyed in the papers mentioned above addresses actions in the

context of attempting to measure the effectiveness of a particular intervention. This is a

difficult problem, principally because the sizes of the instructional effects are often smaller

than the student-to-student and/or classroom level variability, and instructional treatments

are often applied at the classroom level. Note that causal attribution is not necessary for

the MDP, that is, it is not necessary to separate the contributions of the teacher, the class,

and the curriculum but rather to have a good estimate of the total effect. In the classical

context of program evaluation, current educational practice is usually given priority: A new

program must show that it is sufficiently better and that the improvement can be noticed

above the measurement error and between subject variability. In the decision theoretic

framework, priority is given to the method with the lowest cost (often, but not always, the

standard treatment). If the actions have equal cost, decision theory favors the action with

the highest expected effect, even if that difference is not statistically significant (i.e., the

methods have roughly equal value).

The key difference between the approach outlined in this report and others discussed

above is that the MDP framework treats instruction as an action variable to be manipulated,

rather than an observed covariate. This requires an explicit model for how an action affects

student proficiency. Section 4 develops that model.

4 General Action Model

Let St = (S1,t, . . . , SK,t) be the student’s proficiencies on K different skills at time t.

Under the assumptions of the MDP, only the current value of the proficiency variables,

St1 and the action chosen at Time t1, at1 are relevant for predicting the state of of the

proficiency variables at the next time point, St2 . A general assumption of the MDP

framework is that the effects of actions depend only on the current state of the system (the

student’s current proficiency profile). Further, assume that each potential action, a, has a

focal skill, Sk(a), that it targets. Under these conditions, the MDP is specified through a set

of transition probabilities Pa(Sk(a),t2|St1) describing the possible states of the focal skill at

the next time point given all of the skills at the current time point. (An action can have
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Figure 4 A general action model.

Note. The central node is the students success or failure in the assigned activity. This is

influenced by the current values of certain prerequisite skill nodes. The transition proba-

bilities are influenced by the prerequisites only through the success or failure of the action.

Success may or may not be observed.

multiple focal skills, in which case the transition probabilities become a joint distribution

over all focal skills.)

One factor that affects the transition probabilities is how successfully the student

completes the assigned work. To simplify the model, it is assumed that the outcome from

all actions can be represented with a binary variable indicating successful completion.

(The state of the Success variable may or may not be observable.) The probability of

success for an activity will depend on the state of prerequisite skill variables and possibly

on student characteristics (i.e., the student’s receptiveness to various styles of instruction).

The Markov transition probabilities for various skill variables will depend on the success of

the activity (with different transition probabilities for success and failure).

Figure 4 shows a generic action model. Mathias et al. (2006) called this model a

bowtie model because the left and right halves are separated by the knot of the Success

variable. It is generally assumed that an instructional activity can be either successful

or not. Certain prerequisite skills will influence the probability of a successful outcome.

Successful (and unsuccessful) outcomes will each have certain probabilities of changing one

of the underlying proficiencies.

This model contains a key simplification: The value of each focal skill (a skill targeted
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by instruction) at Time t + 1 is conditionally independent from the prerequisites given

the Success of the action and the value of the skill at Time t. Effectively, Success

is a switch that selects one of two different sets of transition probabilities for each focal

skill. Furthermore, interaction between skills occurs only through the prerequisites for

Success (note that the focal skill could appear both on the left-hand side of the knot as a

prerequisite and on the right-hand side as the old value of the skill). This implies that the

model needs only two sets of transition probabilities for the focal skills of the action, instead

of a set of transition probabilities for each configuration of the prerequisites. If the action

has multiple focal skills, then the change in each focal skill is assumed to be independent

given proficiency. (In more complex situations, a separate bowtie could be built for each

focal skill).

The simplification provided by the bowtie is also very important when working with

experts to elicit model structure and prior values for model parameters. Under the bowtie

model, experts need only worry about interactions among the skills when describing the

prerequisites for Success of an action. When defining the effects of the action, the experts

can work one skill at a time. This simplification may not result in models that accurately

reflect of the cognitive process, but it should result in models that are tractable to specify

and compute.

This model was originally developed in collaboration with Judy Goldsmith and

colleagues at the University of Kentucky who were developing a welfare-to-work advising

system (Dekhtyar et al., in press; Mathias et al., 2006). The counseling problem has a

longer time scale than the music example. It also has some actions for which the success

may be observed (e.g., completing a high school GED program) and some for which it may

not be observed (e.g., the success of a substance abuse treatment program). Mathias et

al. (2006) found that experts (welfare case workers) had difficulty specifying a complete

set of transition probabilities for an action, but did feel comfortable supplying a list of

prerequisites and consequences of an action along with a relative indication of the strength

and direction for each variable.

Vygotsky’s zone of proximal development for an action can be modeled in both the
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probability of success and the transition probabilities. Assignments that are too hard are

modeled with a low probability of success. This is reflected in the model by making the

focal proficiency a prerequisite for success. Assignments that are too easy are marked by

reducing the transition probability to higher states. If such an assignment is completed

successfully, the probability of moving from a low proficiency state to a middle state is high,

but the probability of moving from a middle to a high proficiency state is low.

The general action model makes a number of crude assumptions, but it still has some

attractive properties. In particular, it has a very clean graphical structure and supports

probability distributions containing only a few parameters related to concepts with which

experts will resonate. More importantly, it splits the problem of modeling an action into

two pieces: modeling the factors contributing to success (Section 4.1) and modeling the

effects of the action given success (Section 4.2 for continuous proficiency variables and

Section 4.3 for discrete). Each piece can then be addressed separately.

4.1 The Noisy-And Model of Success

The Success variable in the bowtie model renders the left-hand side (modeling the

prerequisite relationships) and the right-hand side (modeling student growth) conditionally

independent. Sections 4.2 and 4.3 describe the models for growth. The key contribution of

the Success variable is that it allows for two different growth curves, one for when the

lesson was effective and one for when it was ineffective.

Let Xt represent the value of the Success variable for the action assigned at Time t,

coded 1 for success and 0 for failure. Here success lumps together motivation—did the

student do the lesson—mastery of the proficiency addressed in the lesson—did the student

do it right — and appropriateness—was this lesson an effective use of the student’s practice

time. The left-hand side of the bowtie model requires that the distribution of success

must be given conditioned on the values of the prerequisite proficiency variables at the

time of the start of the lesson. In the most general case, the number of parameters can

grow exponentially with the number of prerequisites; therefore, it is worth trying to find a

simpler model for this part of the relationship.
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Usually, for an action to be successful all the prerequisites for that action must be met.

For each prerequisite, Sk′ , let s−k′,a be the minimum level of that proficiency required for

Action a to have a high probability of success, and let δ(Sk′,t ≥ s−k′,a) = 1 if Sk′,t ≥ s−k′,a

is true (student meets prerequisites for Proficiency k′) and δ(Sk′,t ≥ s−k′,a) = 0 otherwise.

Even given the current proficiency level of the student, some uncertainty remains about the

success of the action, Xt. In particular, let qk′,a be the probability that a student assigned

Action a compensates for missing the prerequisite, Sk′ , and let q0,a be the probability that a

student who meet the prerequisites successfully completes the activity. Then the noisy-and

distribution (Junker & Sijtsma, 2001; Pearl, 1988) can model the relationship between S

and X:

P(Xt = 1|St, a) = q0,a

∏
k′

q
1−δ(Sk′,t≥s−

k′,a)

k′,a . (1)

Note that zone of proximal development considerations could be added by making the

interval two-sided (e.g., δ(s+
k′,a ≥ Sk′,t ≥ s−k′,a)). This would state that the action would

usually be unsuccessful (ineffective) if the prerequisite skill was either too high or too low.

The use of bounds also conveniently renders all variables as binary, which is necessary for

the noisy-and model.

The number of parameters in this model is linear in the number of prerequisite skills.

The experts must specify (or the analysts must learn from data) only the lower and upper

bound for each prerequisite and the probability that the student can work around the

missing prerequisite, qk,a. In addition, the probability that the lesson will be successful

when the prerequisites are met, q0,a must be specified. In practice, experts will generally

specify the thresholds and prior distributions for the qk,a parameters. The latter can be

refined through calibration, if appropriate longitudinal data are available. This seems

like a large number of parameters to work with; however, without some kind of modeling

restriction, the number of parameters grows exponentially with the number of prerequisites.

Furthermore, the boundaries should be close to the natural way that experts think about

instructional activities (i.e., this activity is appropriate for persons whose skill is in this

range and who meets these prerequisites).
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One interesting possibility for this model is to explain how instructional scaffolding

might help in an action. Presumably, scaffolding works to lower the level of the prerequisite

skills required for a high chance of success and thus raises the probability of success for an

action that is unlikely to be effective without scaffolding.

Note that the value of the Success probability can be observed or unobserved. When

Success is observed at Time t, it also provides information about the proficiency of the

student at Time t. Success is more likely at some proficiency states than others. Hence,

it can be treated as an additional observable at Time t. When Success is not observed,

there may be some indirect measure of success, such as the student’s self-report. With a

little more work, these measures can be incorporated into the model. Also, with a little

more work, there could be multiple values for Success (for example, the grade received

on an assignment). This might be useful for modeling situations in which there are many

different growth curves in the population. However, the number of parameters increases as

the number of states of Success increases, on both the right- and left-hand sides of the

bowtie model.

4.2 Linear Growth Model

Assuming that the underlying proficiencies are continuous and that growth occurs in

a linear way (albeit with noise) leads to a linear growth model. This model is similar to

one used in a classical signal processing problem called the Kalman filter (Kalman & Bucy,

1961).

Following the general convention for the Markov decision process framework, a model

is needed for the initial timeslice and then a model for what happens at each increment.

For the initial conditions, a multivariate normal distribution is assumed: S0 ∼ N(θ0,Σ0).

At this point, a fundamental assumption is made: Practice increases skills and skills

decrease with lack of practice. According to this assumption, the growth model can be

split into two pieces. In the background, skills deteriorate over time unless that decrease

is offset by practice. If the skill is being actively and effectively practiced, then the skill

will increase over time. However, the effectiveness of the practice depends on how well the
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selected assignment (the action) is matched to the student’s current ability levels.

First, the background deterioration of the proficiency is examined. That the proficiency

deteriorates at a fixed rate over time is assumed. Let µk be the deterioration rate for

proficiency Sk. In the absence of instruction,

E[Sk,t2|Sk,t1 ] = Sk,t1 − µk∆t1 .

Note that if the skill is normally practiced in day-to-day life, then µk might be zero or

negative (indicating a slow background growth in the skill).

Instruction, on the other hand, should produce an increase in the skill at the rate

λk(at,St, Xt), which is a function of the current proficiency state, St, the action taken at

Time t, at and the success of that action, Xt. The correct time line for proficiency growth

is rehearsal time and not calendar time. However, in most practical problems, the rehearsal

time will be a multiple of ∆t, possibly depending on the action and its success. Therefore,

the difference between rehearsal and calendar time can be built into the growth rate,

λk(at,St, Xt). Thus, the proficiency value at time t2 will be:

Sk,t2 = Sk,t1 + λk(at,St, Xt)∆t1 − µk∆t1 + εt,k , (2)

where εt,k ∼ N(0, ∆tσ2
a). Making the variance depend on the elapsed time is a usual

assumption of Brownian motion processes (Ross, 1989).

As stated, neither λk(at,St, Xt) nor µk are identifiable from data. One possible

constraint is to set a zero growth rate for all unsuccessful actions, λk(at,St, Xt = 0) = 0.

This models a common rate of skill growth (deterioration), µk, for failure across all actions.

This is appealing from a parameter reduction standpoint. Another possibility is to set

µk to a fixed value, thus effectively modeling the proficiency change when the action fails

individually for each action.

As λk(at,St, Xt) depends on Xt, it already incorporates the prerequisite relationships

and zone of proximal development; however, it does so through the use of hard boundaries.

Although Equation 1 captures the prerequisite relationships, it does not do a good job of

capturing the zone of proximal development. An assignment that is a little too easy is
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expected to have some value, just not as much. The same will be true for an assignment

that is a little too hard. On the other hand, an assignment that is much too easy or much

too hard should produce little benefit. Let s∗k,a be the target difficulty for Action a. One

possible parameterization for, λk(St, a, Xt) is:

λk(St, a, Xt) = ηk,a,Xt − γk,a,Xt(Sk,t − s∗k,a)
2 . (3)

The first term, ηk,a,Xt , is an action specific constant effect. The second term is a

penalty for the action being at an inappropriate level; the parameter γk,a,Xt describes the

strength of this penalty. The choice of squared error loss to encode the proximal zone of

development is fairly conventional. It has the desired property of having zero penalty when

the student is exactly at the target level for the action with the penalty going up rapidly as

the student’s proficiency level is either too high or too low. In fact, it may be necessary to

truncate Equation 3 so that λk(St, a, Xt) never falls below zero. One possible problem with

this parameterization of λ is that it treats insufficient and excess skill symmetrically. This

may or may not be realistic. However, using the focal proficiency as both a prerequisite and

in the proximal zone equation allows limited modeling of asymmetric relationships.

Two values of η and γ must be specified for each action, a, and each proficiency variable

affected by the action, Sk: one set of values is needed for a successful action, Xt = 1, and

one for an unsuccessful action, Xt = 0. As noted above, in many situations it may be

desirable to set the values of η and γ to zero when the action is not successful and let the

base rate µk dominate the change in ability.

4.3 Birth-and-Death Process Model

The insights gained from the linear model can be used to create a similarly simple

model for discrete proficiencies. For this section, assume that the proficiency variables

range over the values 0 to 5 3 (truncating the proficiency scale at the higher abilities model

students graduating from this tutoring program).

Assume that the time interval ∆tn is always small enough that the probability of

a student moving more than one proficiency level between lessons is negligible. In this
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case, a class of stochastic process models called the birth-and-death process (Ross, 1989)

is often used. It is called a birth-and-death process because it is useful for modeling

population change. In this example, the student’s ability corresponds to the population.

The birth-and-death process assumes that birth (increase) and death (decrease) events

both happen according to independent Poisson processes. In the case of skill acquisition,

the birth rate is the rate of skill growth, λk(St, a, Xt), and the death rate, µk, is the rate of

skill deterioration.

Actually, this is not quite a classic birth-and-death process because there is an

absorbing state at the top of the ability scale. In some ways, this makes things easier

because the outcome spaces are finite (and the same model is not likely to be valid for

infinite ability ranges). A second difference from the classical birth-and-death model is that

the birth rate is a random variable (as it depends on the random success, Xt, of the action).

In general, both the improvement and deterioration rate will depend on the student’s

current proficiency level. At the minimum, the rates at the boundary conditions will be

zero (a student cannot transition lower from the lowest state or higher than the highest).

It seems sensible to keep the deterioration rate, µk, constant, except at the boundary.

Similarly, Equation 3 could be pressed into service to generate the improvement rates.

5 Examples of the Models in Action

A small simulated data experiment should aid in understanding how the proposed

temporal models can unfold. Section 5.1 describes the parameters used in simulation, based

on the Music Tutor example (Section 2). Section 5.2 looks at a couple of simulated series

and at how well they can be estimated by various techniques. Section 5.3 summarizes key

findings from the simulation.

5.1 Music Tutoring Simulation

The music tutoring problem defines two proficiency scales, Mechanics and Fluency.

The student’s proficiencies on these two scales at Time t, taken together, form St. To

further specify the scale for a numerical example, both are continuous and take on values
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between 0 and 6. To further define the scale, assume that the the student is assumed to be

randomly selected from a population with the following normal distribution:

S0 ∼ N(µ, Ω)

where

µ =

1.5

1.5

 , and Ω =

0.52 0.48

0.48 0.52

 .

Assume that at each meeting with the student, the tutor evaluates the student’s

current proficiency rating, assigning a score for Mechanics and Fluency based on the

same scale as the underlying proficiencies (0–6), but rounded to the nearest half-integer.

Assume that the assessment at any time point, Yt, has relatively low reliability and

that the two measures are confounded so that the Mechanics proficiency influences the

Fluency component of the score and vice-versa. The evidence model for these benchmark

evaluations is given by the following equation:

Yt = ASt + et , (4)

where

et ∼ N(0, Λ) ,

with

A =

0.7 0.3

0.3 0.7

 , and Λ =

0.65 0

0 0.65

 ,

and the tutor rounds the scores to the nearest half-integer.

The numbers stated above are enough to calculate the reliability of the benchmark

assessment at Time 0. The expression Ωii/(Ω + A−1Λ(A−1)T ))ii, gives the reliability for the

measurement of Skill i. Using the number from the simulation, this gives a reliability of

0.45 at Time 0.

As time passes, however, the variance of the population will increase. Equation 2

describes a random walk in discrete time, or a Brownian motion process. In both cases the

variance of Sk,t should be σ2
Sk,0

+ tσ2
∆Sk

, where σ2
Sk,0

is the Time 0 population variance and
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σ2
∆Sk

is a quantity that describes the variance of the innovations (the result of differencing

Equation 2) at each time step. Thus, both the numerator and denominator in the reliability

equation will increase over time, and the reliability will increase. This is a reflection of a

well-known fact that reliability is population dependent.

In general, the variance of ∆St (change in skill from time to time) is difficult to

calculate, in part because it depends on the policy—the series of rules by which actions

are chosen. Thus, in the model described here, there are three sources of variance for the

difference in skill between time points: (a) the random response to the chosen action (as

expressed by the Success variable); (b) estimation error for the current proficiency level

that causes the chosen action to target a proficiency higher or lower than the actual one

(thus affecting the growth rate); and (c) the variation of the observed growth around the

average growth curve, the quantity referred to as εk,t in Equation 2.

For the tutor, choosing an action, at, consists of choosing a Mechanics and Fluency

level for the assignment. (Ignore for the moment the fact that lessons with high Fluency

and low Mechanics demands might be difficult to obtain, as they will rarely be called

for by the model.) A reasonable first guess at an optimal policy is for the tutor to simply

assign a lesson based on the tutor’s best estimate of current student proficiency.

Using the bowtie model, the action is modeled in two pieces: one for the success of

the action and one for the effect of the action given the success status. In this simulation,

each proficiency dimension is assigned a separate success value, Xtk, taking on the value 1

if the lesson is effective and 0 if the lesson is not effective. Furthermore, the two success

values are assumed to be independent given the proficiency. A key component of the model

is that the proficiency level of the assigned lesson, at, must be within the zone of proximal

development of the student’s proficiency, St. This is accomplished by setting bounds for

Sk,t − ak,t.

For the Mechanics skill, there is still some benefit from practicing easy techniques

(large positive difference between skill and action), but if the technique to be practiced

is much above the student’s current Mechanics proficiency (negative difference), the

benefit will be minimal. For that reason, the Mechanics prerequisite is considered met
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when δM(St, at) = δ(−1 ≤ SMechanics,t − aMechanics,t ≤ 2). For Fluency the opposite is

true; rehearsing musical pieces below the current student level has minimal benefit, while

attempting a piece that is a musical stretch is still worthwhile. Therefore, the Fluency

prerequisite is considered met when δF (St, at) = δ(−1 ≤ SFluency,t − aFluency,2 ≤ 2).

Because students may benefit from the lesson even if the prerequisites are not met, guessing

parameters, q1, are added to the model. For this example, set q1,Mechanics = .4 and

q1,Mechanics = .5, reflecting the fact that mechanical ability is harder to fake than fluency.

Finally, Equation 1 contains a parameter, q0, for the probability that a student succeed

given that the prerequisites are met. As the success variable is two-dimensional, this

parameter is two-dimensional as well. The probabilities are .8 for Mechanics and .9 for

Fluency, reflecting the fact that students are usually less motivated to study mechanics

than fluency. Multiplying the values of q and q0 out according to Equation 1 yields the

conditional probability table for P(Xt|St, at), shown in Table 1.

Table 1

Success Probabilities by Prerequisite

δM(St, at) δF (St, at) P(Xt,Mechanics = 1) P(Xt,Fluency = 1)

TRUE TRUE .80 .90

TRUE FALSE .40 .45

FALSE TRUE .32 .36

FALSE FALSE .16 .18

The relatively simplistic assumption can be made that successful practice is 10 times as

effective as unsuccessful practice. Thus, it is possible to simply multiply the rate constant

λ by (.9 ∗Xt + .1) to get the effective improvement rate for each time period.

Setting the improvement and deterioration rates requires first picking a time scale. If

the base time scale is months, then a monthly series can be simulated by using a time step

of 1 between data points and a weekly series by using a time step of 1/4. Using this scale,

the Mechanics proficiency deteriorates at the rate of .02 proficiency units per month,
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while Fluency deteriorates at the rate of .01 proficiency units per month. Thus, over a

short simulation, proficiency is likely to stay fairly level with no instruction.

Recall that according to Equation 3, the improvement rate has two components: a

constant term η and a quadratic penalty term, γ, for being far from the target proficiency

of the lesson. For both proficiencies, η was set at .2 proficiency units per month (10–20

times the deterioration rate), while γ was set to .1 for Mechanics and .15 for Fluency,

indicating that mechanical practice for a lesson that is off target provides more benefit than

fluency practice (provided that the lesson was effective).

Naturally, there is some random variability in the proficiency change at each time

point. Assume that this happens according to a Brownian motion process (see Ross, 1989),

so that the variance will increase with the elapsed time between lessons. In this case,

Var(εk,t) = σ2∆t. For this example, σ is set to .02 for both proficiencies. (Note that the

model does not require that the errors be uncorrelated across the dimensions; the error

could instead be described in terms of a covariance matrix.)

Using these numbers and a policy for making assignments at each time point, it is

reasonably straightforward to write a simulation. Appendix B gives the code written in

the R language (R Development Core Team, 2005) used to perform the simulation. Two

questions are of immediate interest: (a) given a sequence of observations, what is the most

likely value for the underlying student proficiency? and (b) how can a policy be set for

assigning an action at each time point?

The first corresponds to a classic time series concept called filtering. The name comes

from signal processing, in which high frequency noise (measurement error) is separated

from the underlying signal. Filters take the previous observations as input and output an

estimate of the current level of the signal (or in this case, the current proficiency level).

Appendix A describes several possible filters.

One filter that is able to take advantage of the structure and constraints of the problem

is the particle filter (Doucet et al., 2001; Liu, 2001). The particle filter works by generating

a number of plausible trajectories for the student through proficiency space and weighting

each one by its likelihood of generating the sequence of observed outcomes (Appendix A)
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provides more detail). This can be represented graphically (Figure 5) by a cloud of points

colored with an intensity related to their weights. The best estimate for the student at

each time point is the weighted average of the particle locations at that time point. A 95%

credibility interval can be formed by selecting a region that contains 95% of the particles

by weight.

Although the particle filter is quite flexible, it is also computationally intensive. For the

purposes of the simulation, the policy was based on an ability estimate that was simpler

to compute. In the simulation described below, the tutor’s assignments were based on an

estimate using an exponential filter, a simple weighted sum of the current observation and

the previous estimate. Exponential filters are optimal when the underlying process is well

approximated by an integrated moving average process (Box & Jenkins, 1976), a simple

class of models that often provides a good approximation to the behavior of nonstationary

time series. Appendix A describes the exponential filter. The weight is set rather arbitrarily

at 0.5.

Finally, the policy needs to be specified. In this case, the policy is straightforward:

the instructor targets the lesson to the best estimate (using the exponential filter) of the

student’s current ability.

5.2 The Simulation Experiment

Using the model of Section 5.1, assume that the student and music tutor meet monthly.

Using this basic framework, Table 2 shows data for a simulated year of interactions

between tutor and student. Note that the actions shown in Table 2 are based on matching

the action level to the average of the previous three observed values (rounded to the

nearest half-integer). This provides an opportunity to compare the particle filter, which

incorporates the model for growth, to the much simpler exponential filter, which does not.

Figure 5 is an animation4 of the result of applying the particle filter to the data in

Table 2, with the value of the success variable assumed to be observed (input to the filter).

The diamond represents the student simulated proficiency. This is the ground truth of

the simulation and the target of inference. The triangle plots the noisy (low reliability)
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Table 2

Monthly Simulated Data for Music Tutor Example

Time Truth Observed Action Success

Months Mech. Flu. Mech. Flu. Mech. Flu. Mech. Flu.

0 1.55 1.37 1.5 1.5 1.5 1.5 1 1

1 1.73 1.51 2.0 1.5 1.5 1.5 1 1

2 1.88 1.72 2.5 1.0 2.0 1.0 1 1

3 2.05 1.84 3.0 2.0 2.5 1.5 1 1

4 2.21 2.02 2.0 2.0 2.0 1.5 1 1

5 2.39 2.15 1.0 2.0 1.5 1.5 1 1

6 2.48 2.26 2.5 3.0 2.0 2.0 1 1

7 2.65 2.42 4.0 3.0 3.0 2.5 1 1

8 2.79 2.59 2.5 1.0 2.5 1.5 0 0

9 2.79 2.59 3.0 3.0 2.5 2.0 0 1

10 2.78 2.73 3.5 2.0 3.0 2.0 0 1

11 2.77 2.84 3.0 3.0 3.0 2.5 1 1

12 2.97 3.00 2.5 3.5

benchmark test. The star plots the estimate from the exponential filter, which the simulated

tutor uses to decide on the action.

The estimate from the particle filter is shown with the cloud of circles. The circles

are colored gray with the intensity proportional to the weights. (The gray value5 is

1−w
(n)
t /maxnw

(n)
t , where w

(n)
t is the weight assigned to particle n at time t. The point with

the highest weight is black, and the other particles are increasingly paler shades of gray.)

In order to avoid a large number of particle with low weights, the collection of particles

is periodically resampled from the existing particles (this is called the bootstrap filter ; see

Appendix A).

The performance of the estimators can be seen a little more clearly by looking at the
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http://www.ets.org/Media/Research/pdf/RR-07-40-Sime2m.mp4

Figure 5 Particle filter estimates for Music Tutor example, action success ob-

served.

estimates for the two proficiency variables as separate time series. Figure 6 shows the same

estimates as Figure 5 from a different orientation. The upper and lower bounds for the

particle filter estimate are formed by looking at the value at which 97.5% (or 2.5%) of the

weight falls below. Note that although the true value moves to the upper and lower bounds

of the estimate, it always stays within the interval. The exponential filter smoothes some

but not all of the variability. The amount of smoothing could be increased by decreasing

the weight in the filter; however, this will make the estimates more sensitive to the initial

value.

It may or may not be possible to observe the success of the monthly assignments.

Figures 76 and 8 show the results of the particle filter estimate when the action is not

observed. Note that the 95% interval is wider on the new scale.

By changing the value of ∆t, the simulation can be run for weekly rather than monthly
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Figure 6 Time series estimates for Music Tutor example, action success observed.
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Figure 7 Particle filter estimates for Music Tutor example, action success unob-

served.

meetings between tutor and student. In the weekly scheme, the tutor has the ability to

adjust the lesson on a weekly basis; there are also more observations. Figures 9 7 and 10

show the results. Again, the particle filter tracks the true proficiency to within the 95%

confidence band, although in many cases it looks like the true value lies close to the lower

limit.

5.3 Analysis of This Example

The particle filter technique looks good in these artificial settings, where the simulation

model matches the model used in the particle filter. With this choice of weight, the

exponential filter smooths out only a small part of the noise of the series. Decreasing

the weight results in a smoother estimates increasing the reliability of the benchmark

assessment should produce an increase in the smoothness of both the exponential and
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Figure 8 Time series estimates for Music Tutor example, action success unob-

served.

29



http://www.ets.org/Media/Research/pdf/RR-07-40-Sime2wna.mp4

Figure 9 Particle filter estimates for Music Tutor example, action success unob-

served, weekly meetings.

particle filter estimate. The effect should be stronger in the exponential filter, which is not

making optimal use of past observations to stabilize the estimates. Similarly, if the variance

of the skill growth process is large, the particle filter will have less information from past

observations with which to stabilize the current estimates. Thus, its improvement over the

exponential filter type estimator will be more modest.

Note that the benchmark assessment was deliberately chosen to have low reliability.

The practical considerations of time spent in the classroom for instruction versus assessment

require that the benchmark assessments be short in duration. That means that as a

practical matter the reliability of the benchmark assessments will be at best modest.

A larger problem with the exponential filter is that it does not adapt its weight as the

series gets longer and longer. In the initial part of the series, the previous estimate is based

on only a few prior observations and thus still has a fairly large forecasting error. In this
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Figure 10 Time series estimates for Music Tutor example, action success unob-

served, weekly meetings.
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case, the weight given to new observations should be fairly high. After several observations

from the series, the forecasting error should decrease, and the previous estimate should be

weighted more strongly in the mixture. The particle filter does this naturally (using the

variance of the particle cloud as its estimate of the forecasting variance). The Kalman filter

(Kalman & Bucy, 1961) also automatically adjusts the weights, and might produce a good

approximation to the more expensive particle filter.

Another interesting feature of this simulation is the fact that the growth curves display

periods of growth interspersed with flat plateaus. This shape is characteristic of a learning

process that is a (latent) mixture of two growth curves. This seems to mimic behavior

sometimes seen in real growth curves, where some students will show improvement at the

beginning of a measurement period and some towards the end. If the Success variable

were allowed to take on more than two values, the bowtie model could mimic situations

with multiple growth curves at the cost of adding a few more parameters to the model.

These results do not take into account the uncertainty in the parameters due to

estimation. The particle filter used the same parameters as the data generation process;

thus, it was operating under nearly ideal conditions. It is still unknown how easy it will be

to estimate parameters for this model. Fortunately, the problem can be divided into two

pieces: estimating the parameters for the evidence models (for the benchmark tests) and

estimating the parameters for the action models (for student growth). Evidence models

can be estimated from cross-sectional data, for which it is relatively inexpensive to get

large sample sizes. Estimating growth requires longitudinal data, which are always more

expensive to collect.

The big advantage of the more complex model described in this paper is that it

explicitly takes the instructor’s actions from lesson to lesson into account when estimating

the student’s ability. Thus, the model provides a forecast of the student’s ability under any

educational policy (set of rules for determining an action), making it useful for instructional

planning.
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6 Planning

Although the cognitive processes of proficiency acquisition and deterioration are almost

certainly more complex than the simple model described here, the model does capture some

of their salient features. The model is hoped to be good enough for the purpose of filtering

(improving the estimates of current student proficiency levels) and forecasting (predicting

future proficiency levels). In particular, the instructor needs to be able to form a plan—a

series of actions or strategies for selecting the actions at each lesson—that has the best

probability of getting the student to the goal state.

The setup described here has most of the features of a Markov decision process. The

previous sections show how the growth in proficiency can be modeled as a discrete time

(or continuous time) Markov process. The evidence-centered design framework describes

how observations can be made at various points in time. The last needed element is the

specification of the utilities. First, assume that the costs associated with each test and each

action are independent of time. Next, assume that there is a certain utility u(St, t) for

the student being at state St at Time t, and let the total utility be
∑

t u(St, t). Then the

utilities factor over time and all of the conditions of an MDP are met.

In general, the proficiency variables, St, are unobserved. The action outcome Xt may be

directly observable, indirectly observable (say through student self-report of practice time),

or not observed at all. This puts us into a class of models called partially observed Markov

decision processes (POMDPs), which require a great deal of computational resources to

solve (Mundhenk, Lusena, Goldsmith, & Allender, 2000).

Another potential issue with this approach is the infinite time horizon. In theory,

the total utility of a sequence of actions is the sum of the utilities across all time points.

In order for that utility to be finite, either the time horizon must be finite (i.e., one

semester), or future rewards must be discounted in relationship to current rewards. This

is usually done by introducing a discount factor φ and setting the utility at Time t to be

φtu(St). This assumption may have interesting educational implications. For example, it is

widely reported that students who acquire reading skills early have an advantage in many

other subjects while students who acquire reading skills late have significant difficulties to
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overcome.

The solution to a MDP is a policy—a mapping from the proficiency states of the

student to actions (assignments given to the student). However, in the POMDP framework,

as true proficiency levels are known, policies map from belief states about students to

actions. If testing has a high cost in this framework, testing can be considered a different

action (one that improves information rather than changes student state), and decisions

about when to test can be included in the policy.

Finding solutions to POMDPs is hard (Mundhenk et al., 2000), but a number of

approximate algorithms for solving POMDPs exist. The problem is still very difficult

and heuristics for reducing the number of candidate actions are potentially useful. Here,

reasoning about prerequisites can reduce the size of the search space. In particular, if

the probability of success for an action is small, it can be eliminated. For example, any

assignments that are much more difficult than the current best guess of the student’s

proficiency level can probably be safely pruned from the search space.

Suppose that the utility has a structure that gives a high reward if the student has

reached a goal state, a certain minimal level of proficiency. This utility models much of

the emphasis on standards in current educational practice. Then the POMDP model

can be used to calculate the probability that the student will reach the goal—meet the

standards—by a specified time point. In particular, the model can identify students for

whom the probability of meeting the goal is small. These are at-risk students for whom

the current educational policy is just not working. Additional resources from outside the

system would need to be brought to bear on these students.

7 Discussion

The model described above captures many of the salient features of proficiency

acquisition using only a small number of parameters. In particular, the number of

parameters grows linearly in the number of prerequisites for each action, rather then

exponentially. They are a compromise between producing a parsimonious model and a

model faithful to the cognitive science. As such, this model may not satisfy either pure
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statisticians or cognitive scientists, but it should have sufficient ability to forecast student

ability to be useful, especially for the purposes of planning.

Even though the models are parsimonious, the ability to estimate the parameters

from data is still largely untested. Markov chain Monte Carlo and other techniques may

provide an approach to the problem, but weak identifiability of the parameters could cause

convergence problems in such situations. These models need to be tested both through

simulation experiments and applications to real data.

One part of the estimation problem is estimating the effects of a particular action. The

literature on this topic is vast (von Davier & von Davier, 2005, provided a review). Usually

both the pretest and posttest need to have high reliability, and often there is a problem of

vertical scaling between the pretest and posttest.

One difficulty with estimating growth model parameters is experiments in classrooms

rarely have pure randomized designs that easily allow causal attribution of observed effects.

The goal of the model described in this paper is filtering (better information about current

proficiency) and forecasting (predicting future state), not measuring change. It is sufficient

to know that normal classroom activities plus a particular supplemental program have

a given expected outcome. Untangling the causal factors has important implications for

designing better actions but not immediate applicability to the filtering and forecasting

problems. Even in situations where the goal is to make inferences about the effect of a

particular program, the models developed here would be suitable as imputation models to

fill in data missing due to random events (e.g., student absence on one of the test dates).

As missing data can affect a large number of records in a study that observes students over

a length of time, this capability represents a big improvement.

Many traditional models for student growth assume that growth for all students is along

the same trajectory, with random errors about that common trajectory. Typical studies

looking at proficiency trajectories (e.g., Ye, 2005) show a large number of different growth

curves. The models described in this paper have only two growth curves (at each time

point): one if the action succeeded and another if it did not (although a student can be on

different curves in different time intervals). Whether this is adequate, or whether allowing
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the Success variable to take on more than two states will produce an improvement, has yet

to be determined. If the individual differences in rates are large, then either shortening the

intervals between tests or increasing the reliability of the individual tests should diminish

the impact of those differences in rate on the estimation of student proficiency.

Another potential problem is that in typical classroom assessments periodic benchmark

assessments must be short in order to minimize the amount of time taken away from

instruction. As test length plays a strong role in determining reliability, short benchmark

tests will have modest reliability at best. In the Bayesian framework an estimate about

a student’s current ability is always a balance between the prior probability (based on

the population and previous observations) and the evidence from the observations at the

current time point. If the reliability of the benchmark tests is low, then the estimates of an

examinee’s current proficiency level will be based mostly on previous observations. Thus,

the Bayesian framework already takes reliability into account.

There is a point of diminishing returns. If the test adds almost no information to the

current picture of the student’s proficiency, there is little point in testing. Likewise, there

is little point in testing if the action will be the same no matter the outcome of the test.

Actually, the lack of meaningful choices in the action space may prove to be the largest

problem that this framework poses. No matter how good the diagnostic assessment system

is, it will have little value if the instructor does not have a rich set of viable instructional

strategies available to ensure that the educational goals are reached. On the other hand,

a diagnostic assessment system that integrates explicit models of student growth together

with a well-aligned set of instructional actions could add value for both students and

instructors.
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Notes

1 This example is loosely adapted from a metaphor that John Sabatini has used to explain

his models for reading proficiency. I’m using this example rather than a more realistic one

for two reasons. One, by creating an artificial example I can restrict the problem to a few

dimensions, focusing on those aspects of the problem that require a new approach. Two, I

expect that most of my audience have not recently been beginning readers, but that many

of them have recent experiences with beginning musicians, either through their own interest

or that of their children. Thus, I expect them to resonate better with the proposed models

of cognition.

2 Technically, there is one other restriction on the Markov decision process, which is the

utility must also factor across time. This is discussed later.

3 Alternatively, the ordered set of values do, re, mi, fa, sol, la could be used to make a

true proficiency scale.

4 Readers who are viewing a paper version of this report or for whom the embedded

animation in not working properly can view the figure online at http://www.ets.org/

Media/Research/pdf/RR-07-40-Sime2m.mp4.

5 The way this color is rendered on various screens or printers may vary considerably, so

interpret the gray values with some caution.

6 This animation can be viewed at http://www.ets.org/Media/Research/pdf/

RR-07-40-Sime2mna.mp4.

7 This animation can be viewed at http://www.ets.org/Media/Research/pdf/

RR-07-40-Sime2wna.mp4.

8 Technically, this is a low-pass filter; high-pass filters for removing low frequency noise are

also used.
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Appendix A

Filters

In time series analysis, a filter is a function of a series of observations that produces a

smoothed estimate of the trend of the series. The term comes from signal processing where

the filter removes high frequency noise8 from a signal. The filter provides a better estimate

of the current position in the series. Usually the filter can be run for a few additional cycles

to produce a forecast for the series.

This paper uses two different filters. Section A.1 describes the simple exponential

filter. Section A.2 describes the more flexible and complex particle filter. The Kalman

filter (Kalman & Bucy, 1961; see also Brockwell & Davis, 2002) lies somewhere between

the two in complexity. If the growth process described by Equation 2 was a simple normal

increment, then the Kalman filter would provide optimal predictions.

A.1 Exponential Filter

Assume interest in a time series S0, . . . , St, but a series Y0, . . . , Yt has been observed

that reflects St with some added uncorrelated errors. A simple and often effective filter is

formed by the weighted sum of Yt and the previous estimate ˆSt−1, as follows:

Ŝt =

Y0 for t = 0

αYt + (1− α) ˆSt−1 for t > 0.

(A1)

This is called an exponential filter because when it is written as a sum of past

observations, it looks like

Ŝt =
t∑

k=0

α(1− α)kYt−k .

Thus, past observations fade into the background at a rate (1− α)k. For large values of α,

the filter output tracks the series Yt fairly closely. For small values of α, the filter is much

smoother. However, the summation form is truncated at Y0. Thus for small α the initial

estimate has a fairly high weight.

There doesn’t seem to be a clear consensus about how to set an optimal value for the
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filter parameter α. Brockwell and Davis (2002) described the filter but suggested plotting

the filtered series for several values of α against the observed series and choosing the

parameter based on the quality of the smoothed series.

Box and Jenkins (1976) noted that the filter is optimal for integrated moving average

processes of order one, that is, a time series that can be represented by the equation:

Yt = Yt−1 + et − θ1et−1 , (A2)

where et is a white noise process with zero mean and constant variance, and where

α = 1 − θ1. However, estimating the coefficients of an integrated moving average process

from a short series can be difficult. Another difficulty is that a value of α chosen as optimal

for one student may not work well for another student.

Another issue is that the series described in Equation A2 when differenced has a zero

expected value. Contrast this to Equation 2. If the tutor is applying a reasonable policy, the

differenced should have a positive expected value. Accounting for this positive expectation

requires an additional term for the expected effects of instruction in the filter equation.

Without this term, the filter will slightly underestimate the true value. The smaller the

value of α, the more these errors will accumulate to cause underestimates of the true series.

However, adding an average drift parameter to the filter introduces a second parameter to

estimate.

A.2 Particle Filter

When both the evidence model and the action model are based on normal distributions,

the Kalman filter (Kalman & Bucy, 1961) provides an analytical method for calculating the

posterior distribution over the student’s proficiency at any time point. Unfortunately, the

normality assumption falls down in two respects: (a) if the success variable is unobserved,

then the process is a mixture of normals and not a single normal; and (b) the size of the

drift depends on the distance between the unobserved true proficiency and the difficulty

level of the chosen action. To get around those problems, numerical methods are looked at

for filtering and forecasting.
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The technique chosen below is the particle filter (Doucet et al., 2001; Liu, 2001),

also known as sequential importance sampling. This is a Monte Carlo approximation,

which estimates the posterior distribution through a randomly generated set of particles,

S(1), . . . ,S(N). Each particle, S(n) = {S(n)
0 ,S

(n)
1 ,S

(n)
2 , . . .}, represents a possible trajectory

of the student through proficiency space. At each time step, the particle filter assigns

a weight, w
(n)
t , to each particle based on the likelihood of the observations sequence

Y = {Y0,Y1, . . . ,Yt}. This weight factors as follows:

w
(n)
t = P(Yt|S(n)

t )w
(n)
t−1 . (A3)

The particle filter has a number of desirable properties. First, the accuracy is driven

by the number of particles, N , and not the dimensionality of the proficiency space. Second,

both the calculation of the trajectories and the weights factor in time and only require the

forward data generation equations (as given in Section 5). Consequently, particle filters are

mostly implemented by creating a “cloud” of particles at time point zero and moving them

along a random trajectory at each time point, updating the weights along the way.

One disadvantage of the particle filter is that over time, the weights of most of the

particles will approach zero. This means that the estimates will be based on only a few

particles. To overcome this problem, the bootstrap particle filter periodically resamples

particles from the current distribution, hopefully producing a new set of particles that spans

a more meaningful part of the support of the distribution. The bootstrap filter takes a

weighted sample using the current weight values and sets the weights of the newly sampled

points to 1. Usually the bootstrap sampling is done according to a fixed time schedule

(every so many time points), but other schemes are possible (Liu, 2001).

In estimating proficiencies in the music tutor problem, a series of benchmark assessment

results, Y0,Y1, . . ., and a series of actions, a0, a1, . . ., are observed. There are two cases

to consider. If the success of each action is known, then the data are augmented with

the success indicator variables, X0,X1, . . .. If not, then the particles are augmented with

the success indicators and the success values must be simulated at each time step. Both

variations of the music tutor example can be solved with the algorithm shown below.
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1. Simulate N particles, S
(n)
0 from the initial population distribution for proficiency at

Time 0.

2. Calculate the initial weights for these particles based on the likelihoods of the observ-

ables at the pretest benchmark, Y0.

3. For each time point, t:

(a) If this is a bootstrap cycle (cycle number is divisible by the bootstrap resampling

rate), then:

i. Replace the current set of particles with a new set of particles randomly

chosen according to a weighted sample using the current weights.

ii. Set the current weight, w
(n)
t = 1.

(b) If Xt is unknown, sample a value for Xt according to the distribution P(Xt|S(n)
t , at)

(Equation 1).

(c) Sample the value of the particle at the next time point by using the distribution

P(St+1|S(n)
t , at,Xt) (Equation 2).

(d) Update the weights for the observations at time t + 1 using Equation A3.
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Appendix B

Simulation Code

This section shows the code used for the simulation, written in the R (R Development

Core Team, 2005) programming language. Section B.1 provides the functions used for the

simulation, Section B.1 shows the implementation of the particle filter, and Section B.2

shows a script.

For those unfamiliar with R, it follows most of the usual conventions of algebraic

computer languages (e.g., FORTRAN, C, Pascal, Java). However, a few features of R are

worth noting:

• R is a functional language and functions can be passed as arguments to other func-

tions. The do.call function is called to invoke the function. This allows both the

simulator and particle filter to be written in abstract terms. Thus the line est <-

do.call(initial,list(nparticles)) in the particle filter creates the initial set of

particles by calling the function initial with the argument nparticles; both the

function and number of particles are passed as arguments to the particle filter itself.

• R treats matrixes and vectors as objects and implicitly loops over the elements. Thus,

A+B is the elementwise addition of the matrixes A and B. The apply() and sweep()

functions can be used to perform actions on rows and columns. For example, apply(X,2,sum)

yields the column sums for the matrix X, and sweep(X,1,Y,"/") divides each row in

the matrix X by the appropriate element of the vector Y (the length of Y is assumed to

be the same as the number of rows of X).

B.1 Simulation Function

This section displays the code for setting up the simulation described in Section 5.1.

# These are files for the data generation routines.

## This function takes the proficiency expressed as a vector

## (Mechanics , Fluency) and generates a random lesson value.

evalLesson <- function(proficiency) {
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result <- proficiency %*% evalA +
rnorm(length(evalSig ))*evalSig

result <- round(2*result)/2
result <- ifelse (( result < 0),0,result)
result <- ifelse (( result > 6),6,result)
result

}

## Calculates likelihood of observation given proficiency.

## Assume Proficiency is a matrix with columns equal to the

## particles. Assume observation is a vector (Mechanics ,

## Fluency) Returns a vector of likelihoods , one for each

## particle

evalLike <- function (proficiency , observation) {
if (!is.matrix(proficiency ))

proficiency <- matrix(proficiency ,1)
## I’m ignoring the normalization constant and

## the rounding error

ker <- sweep(sweep(proficiency %*% evalA ,2, observation),
2,evalSig ,"/")

exp(-apply(ker^2,1,sum)/2)
## exp(-sum( ( (proficiency %*% evalA -

## observation)/evalSig )^2)/2)
}

## Calculates success probability of action based

## on current proficiency level.

## Assumes action is a vectors of the form

## (Mechanics ,Fluency)

## Assumes proficiency is a matrix with columns

## (Mechanics , Fluency) returns a vector of

## probabilities of success for the lesson.

actionSuccessP <- function (proficiency , action) {
if (!is.matrix(proficiency )) {

proficiency <- matrix(proficiency ,1)
}
## delta <- threshlow <= action -proficiency &
## action - proficiency <= threshhigh

diff <- sweep(proficiency ,2,action)
delta <- sweep(diff ,2,threshlow ," >=") &

sweep(diff ,2,threshhigh ," <=")
## q0 * prod(q1^(1- delta))

## Need to transpose matrix to get rows varying fastest

qq1 <- apply(q1^(1-t(delta)),2,prod)
outer(qq1 ,q0,"*")

}
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## Calculates the increase rate based on current

## position and selected action.

## Assumes proficiency is a matrix and action is

## a vector

learnRate <- function(proficiency ,action) {
if (!is.matrix(proficiency )) {

proficiency <- matrix(proficiency ,1)
}

# eta - gamma*(proficiency -action )^2
lam <- sweep(proficiency ,2,action )^2
sweep(-sweep(lam ,2,gamma ,"*"),2,eta ,"+")

}

## This function calculates what happens between two lessons

## The the Action arguments are assumed to vectors of the

## form (Mechanics , Fluency ). The time argument should be a

## scalar. Success argument is optionally observed.

## The proficiency and success arguments should be matrixes

## whose rows correspond to particles and have the

## (Mechanics , Fluency) pattern.

lessonEffect <-
function (proficiency , action , time=1,

success = runif(length(proficiency )) <
actionSuccessP(proficiency ,action)

){
if (!is.matrix(proficiency )) {

proficiency <- matrix(proficiency ,1)
}
if (!is.matrix(success )) {

success <- matrix(success , nrow(proficiency),
ncol(proficiency), byrow=TRUE)

}
rehearsal <- (rTimediff*success+rTimeconst)*time
lambda <- learnRate(proficiency ,action)
sigmat <- sigma*sqrt(time)
proficiency1 <- proficiency + lambda*rehearsal -

forgetRate*time
proficiency1 <- proficiency1 +

matrix(rnorm(length(proficiency ))*sigmat ,
nrow(proficiency),ncol(proficiency), byrow=TRUE)

proficiency1 <- ifelse (proficiency1 < 0, 0, proficiency1)
proficiency1 <- ifelse (proficiency1 > 6, 0, proficiency1)
list(success=success ,proficiency=proficiency1)

}
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## Generates the requested number of students

## returns a matrix with rows corresponding to students

## (particles) and columns corresponding to proficiencies.

randomStudent <- function(nstudents =1) {
nvar <- length(popMean)
z <- matrix(rnorm(nstudents*nvar),nstudents ,nvar)
result <- sweep(z%*%popA ,2,popMean ,"+")
##result <- as.vector(popA%*%rnorm(length(popMean ))) +

## popMean

result <- ifelse (( result < 0),0,result)
result <- ifelse (( result > 6),6,result)
colnames(result)<-names(popMean)
result

}

## ncycles -- number of cycles to simulate

## estimator -- function used to estimate current student

## level from observables.

## policy -- function used to estimate next action from

## estimate

## evaluation -- function used to generate observables from

## current proficiencies

## advance -- function used to generate proficiencies at

## next time step from current time step. Note: assume

## that this returns a list of two values , success of action

## and new proficiencies

## initial -- function to generate random initial starting

## value for student.

## cycletime --- time between measurements (could be scaler

## or vector of length ncycles)

simulation <- function(ncycles ,estimator ,policy ,
evaluation = evalLesson ,
advance = lessonEffect ,
initial = randomStudent ,
cycletime =1) {

proficiency <- do.call(initial ,list ())
nvar <- length(proficiency)
tnames <- paste("Time" ,0:ncycles)
vnames <- colnames(proficiency)

# We will fill these in as we go.

truth <- matrix(NA,ncycles+1,nvar ,
dimnames=list(tnames ,vnames ))

obs <- truth
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est <- truth
act <- truth
suc <- truth
if (length(cycletime) == 1) {

cycletime <- rep(cycletime ,ncycles)
}
## Last cycle is stub only

cycletime <- c(cycletime ,0)

# Now we start the simulation

for (icycle in 1: ncycles) {
truth[icycle ,] <- proficiency
observed <- do.call(evaluation ,list(proficiency ))
obs[icycle ,] <- observed
estimate <- do.call(estimator ,list(obs ,est ,act ,suc))
est[icycle ,] <- estimate
action <- do.call(policy ,list(estimate ))
act[icycle ,] <- action
result <- do.call(advance ,

list(proficiency , action ,
time=cycletime[icycle ]))

suc[icycle ,] <- result$success

proficiency <- result$proficiency

}
truth[ncycles +1,]<-proficiency
observed <- do.call(evaluation ,list(proficiency ))
obs[ncycles +1,] <- observed
sim <- data.frame(truth ,obs ,est ,act ,suc ,cycletime)
nsim <- paste("true",vnames ,sep=".")
nsim <- c(nsim ,paste("obs",vnames ,sep="."))
nsim <- c(nsim ,paste("est",vnames ,sep="."))
nsim <- c(nsim ,paste("act",vnames ,sep="."))
nsim <- c(nsim ,paste("suc",vnames ,sep="."))
nsim <- c(nsim ,"cycletime")
names(sim) <- nsim
sim

}

expFilter <- function (obs ,est ,act ,suc ,
alpha = filterAlpha ,
xi = meanInnovation) {

nobs <- sum(!is.na(obs [,1]))
if (nobs == 1) return(obs[1,])
result <- alpha*obs[nobs ,] + (1-alpha)*(est[nobs -1,]+xi)

49



result <- ifelse (( result < 0),0,result)
result <- ifelse (( result > 6),6,result)
result

}

## Generates an action from a proficiency estimate

## Simple policy which tries to match precisely with

## estimate

floorPolicy <- function(estimate) {
floor (2*estimate)/2

}

B.2 Particle Filter

This section displays the code for the particle filter (Section 7) as well as some graphics

designed to work with the particle filter.

## Implementation of simple particle filter techniques.

## <resample > is number of time points between recycling ,

## or zero to suppress resampling.

## In output list , success and map have entry of one size

## less than the est and weight lists (no entry for initial

## time point ).

## <obs >, <act >, and <suc > are matrixes of observations ,

## actions , and success values , where rows represent time

## points and columns represent proficiencies. <suc >

## may be NULL , in which case random success values

## will be generated for each time point.

## <nparticles > controls the number of particles , and

## <resample > controls the number of cycles between

## bootstrap resampling of the particles.

## <cycletime > is the time length of a cycle

## (relative to the other rate parameters)

## Thes arguments should be functions (or function

## names) which calculate the given quantities.

## <obsLike > is the likelihood function for the

## benchmark test

## <successProb > is the probability of success for the

## chosen action
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## <advance > is the forward step generation function of the

## stochastic process

## <initial > is the population prior distribution

bootFilter <- function (obs ,act ,suc=NULL ,
resample=0, nparticles = 1000,
cycletime =1,
obsLike=evalLike ,
successProb= actionSuccessP ,
advance = lessonEffect ,
initial = randomStudent) {

obs <- as.matrix(obs)
act <- as.matrix(act)
if (!is.null(suc)) {

suc <- as.matrix(suc)
}
ncycle <- nrow(obs)-1
if (length(cycletime) == 1) {

cycletime <- rep(cycletime ,ncycle)
}

record <- list (est=list(ncycle), weight=list(ncycle),
map=list(ncycle -1), suc=list(ncycle -1))

##Initial setup

## The goal is to as much as possible use implicit

## looping functions for operations across particles

## and explicit looping functions for operations

## within a particle.

est <- do.call(initial ,list(nparticles ))
record$est [[1]] <- est
weight <- do.call(obsLike ,list(est ,obs [1,]))
record$weight [[1]] <- weight
nvar <- ncol(est)

## Loop over time points

for (icycle in 2: ncycle) {

## Resample if necessary

if (resample >0 && icycle %% resample == 0) {
## Resample

cat("Resampling at cycle",icycle ,"\n")
map <- wsample(nparticles ,weight)
record$map[[icycle -1]] <- map
est <- est[map ,]
cat("Ave weight before =",mean(weight),
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"; after=", mean(weight[map]),"\n")
weight <- rep(1,length(weight ))

} else {
## identity map

map <- 1: nparticles
record$map[[icycle -1]] <- map

}

## Handle the success variable. If it is observed , it

## provides evidence for the current proficiency. If it

## is unobserved , we need to simulate it.

sucP <- do.call(successProb ,list(est ,act[icycle ,]))

if (is.null(suc)) {
## Need to sample success values

success <- matrix(runif(length(sucP)) <
sucP ,nrow(sucP))

} else {
success <- matrix(suc[icycle ,],

nparticles ,nvar ,byrow=TRUE)
sv <- ifelse(success ,sucP ,1-sucP)
weight <- weight * apply(sv ,1,prod)

}
record$suc[[icycle -1]] <- success

## Advance position of particles

est <- do.call(advance ,
list(est ,act[icycle ,],

success=success ,
time=cycletime[icycle ]))$proficiency

record$est[[ icycle ]] <- est

## Evaluate new observations

weight <- weight * do.call(obsLike ,
list(est ,obs[icycle ,]))

record$weight [[ icycle ]] <- weight

}
class(record) <- "ParticleFilter"
record

}

## Returns a sample of indexes (1: length(weights )) given
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## size using weights as weights

wsample <- function (size , weights) {
w <- cumsum(weights)/sum(weights)
## Outer produces an array of true and false values ,

## apply counts number of thresholds exceeded.

apply(outer(runif(size),w,">"),1,sum)+1
}

## Calculates the mean of the particle filter at each time

## point. Argument should be a the output of a bootFilter

## routine. Output is a matrix whose rows correspond to time

## points and whose columns correspond to proficiencies

mean.ParticleFilter <- function (data) {
vnames <- colnames(data$est [[1]])
result <- matrix(NA ,length(data$est),length(vnames ))
for (icycle in 1: length(data$est)) {

result[icycle ,] <-
apply(data$est[[ icycle ]]*data$weight [[ icycle]],2,sum) /

sum(data$weight [[ icycle ]])
}
colnames(result) <- paste("pf",vnames ,sep=".")
result

}

## Calculates an upper and lower quantile of the particle

## distribution and each time point.

## <data > should be a particle filter output and

## <level > should be a vector of two numbers between zero

## and one for the upper and lower bound.

## Output is list of two matrixes whose rows correspond to

## time points and whose columns correspond to

## proficiencies , one for the upper bound , one for

## the lower bound. This is not corrected for the number

## of particles.

ci.ParticleFilter <- function (data ,level=c(.025 ,.975)) {
vnames <- colnames(data$est [[1]])
ub <- matrix(NA ,length(data$est),length(vnames ))
lb <- matrix(NA ,length(data$est),length(vnames ))
colnames(ub) <- colnames(lb) <- vnames
for (icycle in 1: length(data$est)) {

w <- data$weight [[ icycle ]]/sum(data$weight [[ icycle ]])
for (var in vnames) {

est <- data$est[[ icycle ]][,var]
ord <- order(est)
cuw <- cumsum(w[ord])
os <- apply(outer(cuw ,level ,"<"),2,sum)
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os[2] <- os [2]+1 # Adjust to outer fences

os <- ifelse(os <1,1,os)
os <- ifelse(os >length(est),length(est),os)
ci <- est[ord[os]]
lb[icycle ,var] <- ci[1]
ub[icycle ,var] <- ci[2]

}
}
colnames(ub) <- paste("pfub",vnames ,sep=".")
colnames(lb) <- paste("pflb",vnames ,sep=".")
list(lb=lb ,ub=ub)

}

## Produces a series of points for the particle filter , one

## at each time point. This can be use to produce a series

## of static plots or an animation.

## <pf > is the output of a particle filter and

## <sim > is the simulation object used to gather it.

## If <delay > is non -zero , then a delay of so many seconds

## will be added between plots. If <ask > is true ,

## then R will prompt between each time frame.

## If <plotname > is non -null , then a series of png files

## will be generated with the given string as a prefix (it

## may contain a "/" to put the generated series in a

## subdirectory. This image series can then be turned into

## a slide show or an animation. Haven ’t well thought

## out yet what happens if there are more than two

## proficiency dimensions.

plot.ParticleFilter <-
function(pf,sim ,delay=0, plotname=NULL ,

ask=par("ask"), legend=FALSE ,
reftitle="Exponential Filter"
) {

oldpar <- par(ask=ask)
on.exit(par(oldpar ))
if (!is.null(plotname ))

fmt <- sprintf("%%s%%0%dd.png",
floor(log10(length(pf$est )))+1)

for (i in 1: length(pf$est)) {
if (!is.null(plotname ))

png(sprintf(fmt ,plotname ,i))
g <- 1 - pf$weight [[i]]/max(pf$weight [[i]])
gord <- order(-g)
plot(pf$est[[i]][gord ,],col=gray(g[gord]),

main=paste("Time",i), pch=1,
xlim=c(0,6),ylim=c(0,6))
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points(sim[i,1:2], col="red",pch=9,cex =2)
points(sim[i,3:4], col="blue",pch=2,cex =2)
points(sim[i,5:6], col="magenta",pch=8,cex =2)
if (any(legend !=FALSE)) {

legend(legend ,legend=c("True Proficiency",
"Benchmark Test",
reftitle , "Particle",
"(Colored according", "to weight)"),

col=c("red","blue","magenta","black",
grey (.5), grey (.75)) ,

pch=c(9,2,8,1,1,1), pt.cex=2)

}
if (!is.null(plotname )) dev.off()
else if (delay >0) Sys.sleep(delay)

}

}

## This produces a series of time series plots , one for each

## proficiency variable.

## The <simb > input is a data frame formed by joining the

## simulator output , with the mean.ParticleFilter and

## ci.ParticleFilter output. Currently makes lots of

## assumptions based on the Music Example (hardwired

## column numbers and names ).

## If <pfonly > is TRUE , then suppressed printing of

## <observed > and <estimate > columns from simulator.

## Need better pass through of graphics parameters

## to adjust for differences between X11 and PDF

## graphics

plot.simboot <-
function (simb ,pfonly=FALSE ,reftitle="Running Ave") {

time <- (1: nrow(simb))-1

plot(time ,simb[,1],type="b",pch=9,col="red",
ylim=c(0,6),ylab="Mechanics")

if (!pfonly) {
points(time ,simb[,3],type="b",pch=2,col="blue")
points(time ,simb[,5],type="b",pch=8,col="magenta")

}
points(time ,simb[,12],type="b",pch=1,col="black")
points(time ,simb[,14],type="b",pch=1,lty=2,

col=gray (.25))
points(time ,simb[,16],type="b",pch=1,lty=2,

col=gray (.25))

55



if (pfonly)
legend(c(0,max(time)/3),c(6,4.5),

c("Truth", "Particle Filter Mean",
"Particle Filter C.I."),

col=c("red","black",gray (.25)) ,
pch=c(9,1,1),cex=.75,
lty=c(1,1,2))

else
legend(c(0,max(time)/3),c(6,3.5),

c("Truth","Observed",reftitle ,
"Particle Filter Mean",
"Particle Filter C.I."),

col=c("red","blue","magenta","black",gray (.25)) ,
pch=c(9,2,8,1,1),cex=.75,
lty=c(1,1,1,1,2))

plot(time ,simb[,2],type="b",pch=9,col="red",
ylim=c(0,6),ylab="Fluency")

if (!pfonly) {
points(time ,simb[,4],type="b",pch=2,col="blue")
points(time ,simb[,6],type="b",pch=8,col="magenta")

}
points(time ,simb[,13],type="b",pch=1,col="black")
points(time ,simb[,15],type="b",pch=1,lty=2,col=gray (.25))
points(time ,simb[,17],type="b",pch=1,lty=2,col=gray (.25))

}

B.3 Sample Script

This section displays the script used to generate the examples. Simulation 2 in the code

corresponds to Section 5.2.

#This is the actual Simulations

## This function collects all of the initial simulation

## parameters in one place to make it easy to re-run

## simulations.

resetParametersSimulation2 <- function () {
## Regression coefficients for multivariate regression.

evalA <<- matrix(c(.7,.3,.3,.7),2,2)
## Noise std for multivariate regression.

evalSig <<- c(.65 ,.65)
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## Constant noise term in noisy -or model

q0 <<- c(Mechanics =.8, Fluency =.9)
## Upper and lower bounds for delta in noisy -or model

threshlow <<- c(Mechanics=-1,Fluency =-2)
threshhigh <<- c(Mechanics =2,Fluency =1)
## skill bypass parameters in noisy -or model

q1 <<- c(Mechanics =.4, Fluency =.5)

## Constant term in learning rate

eta <<- c(Mechanics =.2, Fluency =.2)
## Zone of Proximal Development term in learning rate

gamma <<- c(Mechanics =.1, Fluency =.15)

## Constant parameters of the learning process

forgetRate <<- c(Mechanics =.02, Fluency =.01)

## R(t) = (rTimediff*success + rTimeconst)*t
rTimediff <<- .9
rTimeconst <<- .1

## Variance of learning processes is sigma ^2*t
sigma <<- c(Mechanics =.02, Fluency =.02)

## Mean and variance of the population.

## popA %*% t(popA) is the variance

popA <<- matrix(c(.6 ,.4 ,.4 ,.6) ,2 ,2)
popMean <<- c(Mechanics =1.5, Fluency =1.5)

timeStep <<- 1
varInnovation <<- sigma*sigma*timeStep +

(timeStep*rTimediff )^2*q0*(1-q0)*eta*eta
filterAlpha <<- .5
meanInnovation <<- 0

}

#########################################################

## Simulation 2, lower success rate

## This is the one used in Section 8.3 of the paper.

resetParametersSimulation2 ()

sime2w <- simulation (52,expFilter ,floorPolicy ,
cycletime =.25)
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boote2w <- bootFilter(sime2w [,3:4], sime2w [,7:8],
sime2w [,9:10],
cycletime=sime2w [,11],
nparticles =1000 , resample =4)

## These two plots produce "animations" of the series

par(mfrow=c(1,1))
plot.ParticleFilter(boote2w ,sime2w ,delay =.25,

legend="topleft")

plot.ParticleFilter(boote2w ,sime2w ,
plotname="Sime2w/Music",
legend="topleft")

## Calculate confidince bands

ci2wb2 <- ci.ParticleFilter(boote2w)
mean2wb2 <- mean.ParticleFilter(boote2w)
sime2wb2 <- data.frame(sime2w [1:52,], mean2wb2 ,

ci2wb2$lb ,ci2wb2$ub)

## Count the number of times the true series passes

## outside of the confidence band.

sum(sime2wb2$true.Mechanics < sime2wb2$pflb.Mechanics ||
sime2wb2$true.Mechanics > sime2wb2$pfub.Mechanics)

sum(sime2wb2$true.Fluency < sime2wb2$pflb.Fluency ||
sime2wb2$true.Fluency > sime2wb2$pfub.Fluency)

pdf("Sime2wB2TS.pdf",width=6,height =9)
par(mfrow=c(2,1),oma=c(0,0,0,0))
plot.simboot(sime2wb2 , reftitle="Exponential Filter")
mtext("Weekly Series , Simulation 2, Action Observed",

outer=TRUE ,cex=1.5, line=-2)
dev.off()
system("open Sime2wB2TS.pdf")

########################################################

## Sim2 conditions , monthly series

resetParametersSimulation2 ()

sime2m <- simulation (12,expFilter ,floorPolicy ,
cycletime =1)
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boote2m <- bootFilter(sime2m [,3:4], sime2m [,7:8],
sime2m [,9:10],
cycletime=sime2m [,11],
nparticles =1000 , resample =4)

pdf("Sime2mBootstrap.pdf",width=6,height =6)
par(mfrow=c(3,4),oma=c(0,0,3,0))
plot.ParticleFilter(boote2m ,sime2m)
mtext("Monthly Series , Action Observed ,Bootstrap Filter",

outer=TRUE ,cex=1.5, line =0)
dev.off()
system("open Sime2mBootstrap.pdf")

## Animations of estimation

plot.ParticleFilter(boote2m ,sime2m ,
plotname="Sime2m/Music",
legend="topleft")

plot.ParticleFilter(boote2m ,sime2m ,delay =.25,
legend="topleft")

ci2mb2 <- ci.ParticleFilter(boote2m)
mean2mb2 <- mean.ParticleFilter(boote2m)
sime2mb2 <- data.frame(sime2m [1:12,], mean2mb2 ,

ci2mb2$lb ,ci2mb2$ub)

## Number of times true series falls outside of

## confidence bands

sum(sime2mb2$true.Mechanics < sime2mb2$pflb.Mechanics ||
sime2mb2$true.Mechanics > sime2mb2$pfub.Mechanics)

sum(sime2mb2$true.Fluency < sime2mb2$pflb.Fluency ||
sime2mb2$true.Fluency > sime2mb2$pfub.Fluency)

pdf("Sime2mB2TS.pdf",width=6,height =9)
par(mfrow=c(2,1),oma=c(0,0,0,0))
plot.simboot(sime2mb2 ,reftitle="Exponential Filter")
mtext("Monthly Series , Action Observed",

outer=TRUE ,cex=1.5, line=-2)
dev.off()
system("open Sime2mB2TS.pdf")

## Reported table of results

xtable(as.matrix(sime2m[,c(1:4 ,7:10)]) ,
digits=c(2,2,2,1,1,1,1,0,0))
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########################################################

## Simulation 2, action unobserved

boote2wna <- bootFilter(sime2w [,3:4], sime2w [,7:8],
cycletime=sime2w [,11],
nparticles =1000 , resample =4)

## Animations

par(mfrow=c(1,1))
plot.ParticleFilter(boote2wna ,sime2w ,delay=.5,

legend="topleft")
plot.ParticleFilter(boote2wna ,sime2w ,

plotname="Sime2wna/Music",
legend="topleft")

ci2wb2na <- ci.ParticleFilter(boote2wna)
mean2wb2na <- mean.ParticleFilter(boote2wna)
sime2wb2na <- data.frame(sime2w [1:52,], mean2wb2na ,

ci2wb2na$lb,ci2wb2na$ub)

## Count the number of times the true series passes

## outside of the confidence band.

sum(sime2wb2na$true.Mechanics < sime2wb2na$pflb.Mechanics ||
sime2wb2na$true.Mechanics > sime2wb2na$pfub.Mechanics)

sum(sime2wb2na$true.Fluency < sime2wb2na$pflb.Fluency ||
sime2wb2na$true.Fluency > sime2wb2na$pfub.Fluency)

pdf("Sime2wB2NATS.pdf",width=6,height =9)
par(mfrow=c(2,1),oma=c(0,0,0,0))
plot.simboot(sime2wb2na ,reftitle="Exponential Filter")
mtext("Weekly Series , Simulation 2, Action Unobserved",

outer=TRUE ,cex=1.5, line=-2)
dev.off()
system("open Sime2wB2NATS.pdf")

#########################################################

## Now on monthly scale

boote2mna <- bootFilter(sime2m [,3:4], sime2m [,7:8],
cycletime=sime2m [,11],
nparticles =1000 , resample =4)

pdf("Sime2mnaBoote.pdf",width=6,height =6)
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par(mfrow=c(3,4),oma=c(0,0,3,0))
plot.ParticleFilter(boote2mna ,sime2m)
mtext("Monthly Series , Action Unobserved ,Bootstrap Filter",

outer=TRUE ,cex=1.5, line =0)
dev.off()
system("open Sime2mnaBoote.pdf")

## Animations

plot.ParticleFilter(boote2mna ,sime2m ,
plotname="Sime2mna/Music",
legend="topleft")

plot.ParticleFilter(boote2mna ,sime2m ,delay=.5,
legend="topleft")

ci2mnab2 <- ci.ParticleFilter(boote2mna)
mean2mnab2 <- mean.ParticleFilter(boote2mna)
sime2mnab2 <- data.frame(sime2m [1:12,], mean2mnab2 ,

ci2mnab2$lb,ci2mnab2$ub)

## Number of times true series falls outside of

## confidence bands

sum(sime2mb2$true.Mechanics < sime2mb2$pflb.Mechanics ||
sime2mb2$true.Mechanics > sime2mb2$pfub.Mechanics)

sum(sime2mb2$true.Fluency < sime2mb2$pflb.Fluency ||
sime2mb2$true.Fluency > sime2mb2$pfub.Fluency)

pdf("Sime2mnaB2TS.pdf",width=6,height =9)
par(mfrow=c(2,1),oma=c(0,0,0,0))
plot.simboot(sime2mnab2 ,reftitle="Exponential Filter")
mtext("Monthly Series , Action Unobserved",

outer=TRUE ,cex=1.5, line=-2)
dev.off()
system("open Sime2mnaB2TS.pdf")

61




